Article 1220

Title of the article

PROJECTIVE METHOD FOR SOLVING THE SCALAR DIFFRACTION PROBLEM ON A NONPLANAR RIGID SCREEN 

Authors

Tsupak Aleksey Aleksandrovich, Candidate of physical and mathematical sciences, associate professor, subdepartment of mathematics and supercomputer modeling, Penza State University (40 Krasnaya street, Penza, Russia), E-mail: mmm@pnzgu.ru 

Index UDK

517.958:535.4, 519.642.2 

DOI

10.21685/2072-3040-2020-2-1 

Abstract

Background. The aim of the work is theoretical justification of a numerical method for solving a scattering problem of acoustic waves by infinitely thin curvilinear acoustically hard screens.
Material and methods. The integral differential equation of the problem of diffraction on a screen is considered; the operator of the equation is considered as a mapping in suitable Sobolev spaces; Galerkin method is used for numerical solving of the problem.
Results. The convergence of the Galerkin method in the problem of diffraction on an acoustically rigid screen is proved; a method for constructing basis functions on non-plane smooth parameterizable screens is proposed, computational experiments are carried out.
Conclusions. The results of the numerical experiments coincide with the main theoretical result of the study; the described approach can be used for solving complicated problems of acoustic scattering. 

Key words

diffraction on an acoustically rigid screen, integral differential equations, convergence of the Galerkin method 

 Download PDF
References

1. Stephan E. P. Integral equations and potential theory. 1987, vol. 10, pp. 236–257.
2. Kress R. Linear integral equations. Berlin: Springer-Verlag, 1989, 299 p.
3. Marchuk G. I., Agoshkov V. I. Vvedenie v proektsionno-setochnye metody [Introduction to projection-grid methods]. Moscow: Nauka, 1981, 416 p. [In Russian]
4. Romanova N. V., Tsupak A. A. Izvestiya vysshikh uchebnykh zavedeniy. Povolzhskiy region. Fiziko-matematicheskie nauki [University proceedings. Volga region. Physical and mathematical sciences]. 2016, no. 2 (38), pp. 54–66. [In Russian]
5. Lebedeva S. G. Antenny [Antennas]. 2013, no. 2, pp. 3–6. [In Russian]
6. Daeva S. G., Setukha A. V. AIP Conference Proceedings. 2015, vol. 1648, pp. 39004-1.
7. Smirnov Yu. G., Tsupak A. A. Differentsial'nye uravneniya [Differential equations]. 2015, vol. 51, no. 9, pp. 1234. [In Russian]
8. Smirnov Yu. G., Tsupak A. A. Matematicheskaya teoriya difraktsii akusticheskikh i elektromagnitnykh voln na sisteme ekranov i neodnorodnykh tel [Mathematical theory of diffraction of acoustic and electromagnetic waves on a system of screens and inhomogeneous bodies]. Moscow: RuScience, 2016, 223 p. [In Russian]
9. Agranovich M. S. Sobolevskie prostranstva, ikh obobshcheniya i ellipticheskie zadachi v oblastyakh s gladkoy i lipshitsevoy granitsey [Sobolev spaces, their generalizations, and elliptic problems in domains with smooth and Lipschitz boundaries]. Moscow: MTsNMO, 2013, 379 p. [In Russian]
10. Tsupak A. A. Izvestiya vysshikh uchebnykh zavedeniy. Povolzhskiy region. Fizikomatematicheskie nauki [University proceedings. Volga region. Physical and mathematical sciences]. 2014, no. 1, pp. 30–38. [In Russian]
11. Smirnov Yu. G., Tsupak A. A. Differentsial'nye uravneniya [Differential equations]. 2014, vol. 50, no. 9, pp. 1164–1174. [In Russian]

 

Дата создания: 02.09.2020 11:07
Дата обновления: 16.09.2020 11:37